Amplification of GC-rich Putative Mouse PeP Promoter using Betaine and DMSO in Ammonium Sulfate Polymerase Chain Reaction Buffer
نویسندگان
چکیده
BACKGROUND Recently, we have shown that peroxisomal protein expression was induced upon retinoic acid treatment in mouse embryonic stem cells during the process of neurogenesis. Thus, characterization of the respective promoter could elucidate the molecular aspects of transcriptional regulation of this gene. METHODS Using the conventional software programs for promoter prediction, a putative promoter region was identified approximately 561 bp upstream of the peroxisomal protein coding sequence. In order to clone this region with a GC-content of 71.01%, a cocktail of ammonium sulfate buffer supplied with two additive components, betaine and dimethyl sulfoxide, and a high concentration of MgCl(2) was used. RESULTS The modulated polymerase chain reaction composition significantly improved the amplification of GC-rich DNA target sequences. Improved amplification of this region was due to reduction in the formation of secondary structures by the GC-rich region. CONCLUSION Therefore, this polymerase chain reaction composition could be generally used to facilitate the amplification of other GC-rich DNA sequences as verified by amplification of different GC rich regions.
منابع مشابه
DMSO and Betaine Greatly Improve Amplification of GC-Rich Constructs in De Novo Synthesis
In Synthetic Biology, de novo synthesis of GC-rich constructs poses a major challenge because of secondary structure formation and mispriming. While there are many web-based tools for codon optimizing difficult regions, no method currently exists that allows for potentially phenotypically important sequence conservation. Therefore, to overcome these limitations in researching GC-rich genes and ...
متن کاملPCR amplification of GC-rich DNA regions using the nucleotide analog N4-methyl-2'-deoxycytidine 5'-triphosphate.
GC-rich DNA regions were PCR-amplified with Taq DNA polymerase using either the canonical set of deoxynucleoside triphosphates or mixtures in which the dCTP had been partially or completely replaced by its N4-methylated analog, N4-methyl-2'-deoxycytidine 5'-triphosphate (N4me-dCTP). In the case of a particularly GC-rich region (78.9% GC), the PCR mixtures containing N4me-dCTP produced the expec...
متن کاملAdaption of SYBR Green-based reagent kit for real-time PCR quantitation of GC-rich DNA.
In the mammalian genome, approximately 50% of all genes are controlled by promoters with high GC contents. Analyzing the epigenetic mechanisms regulating their expression is difficult. Hence, we examined a method for stable quantification of such GC-rich DNA sequences. Quantification of DNA during real-time PCR is often based on reagent kits containing the fluorescent dye SYBR Green. However, t...
متن کاملEmployment of nanomaterials in polymerase chain reaction: insight into the impacts and putative operating mechanisms of nano-additives in PCR
The unique ability to rapidly amplify low copy number DNA has made in vitro Polymerase Chain Reaction one of the most fundamental techniques in modern biology. In order to harness this technique to its full potential, certain obstacles such as nonspecific by-products, low yield and complexity of GC rich and long genomic DNA amplification need to be surmounted. As in vitro PCR does not have any ...
متن کاملImproved PCR method for amplification of GC-rich DNA sequences.
Most housekeeping genes, tumor-suppressor genes, and approx 40% of tissue-specific genes contain G+C sequences in their promoter region that were very difficult to amplify. In this report, we propose an improved polymerase chain reaction (PCR) method to be used for successful amplification of the tissue factor pathway inhibitor (TFPI)-2 gene promoter region that exhibit >70% G+C content in a se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2012